Exploring Interfaces between CS and CDS

Mani Chandy
Sayan Mitra
Concetta Pilotto
Jerome White
Overview

1. Control theory
2. Distributed computing theory
3. Differences
4. Graph dynamics: CDS & CS viewpoints.
5. Example: Mobile agents in formation from the CDS and CS viewpoints.
6. Caltech joint CDS/CS research: MURI
Example #1: Cruise Control

Stability/performance
- Steady state velocity approaches desired velocity as $k \to \infty$
- Smooth response; no overshoot or oscillations

Disturbance rejection
- Effect of disturbances (hills) approaches zero as $k \to \infty$

Robustness
- None of these results depend on the specific values of b, m, or k for k sufficiently large

\[m \ddot{v} = -bv + u_{\text{engine}} + u_{\text{hill}} \]

\[u_{\text{engine}} = k(v_{\text{des}} - v) \]

\[v_{ss} = \frac{k}{b+k} v_{\text{des}} + \frac{1}{b+k} u_{\text{wind}} \]

- $\to 1$ as $k \to \infty$
- $\to 0$ as $k \to \infty$
Frequency Response for a Mass Spring System

Steady state frequency response

- Force the system with a sinusoid
- Plot the “steady state” response, after transients have died out
- Plot relative magnitude and phase of output versus input (more later)

Matlab simulation

```matlab
function dydt = f(t, y, ...)
    u = 0.00315*cos(omega*t);
    dydt = [y(3);
            y(4);
            -(k1+k2)/m1*y(1) + k2/m1*y(2);
            k2/m2*y(1) - (k2+k3)/m2*y(2)
            - b/m2*y(4) + k3/m2*u ];
    t,y] = ode45(dydt,tspan,y0,[], k1, k2, k3, m1, m2, b, omega);
```
Difference Equations

Difference eqs model discrete transitions between continuous variables
- “Discrete time” description (clocked transitions)
- New state is function of current state + inputs
- State is represented as a continuous variable

Example: CD read/write head controller (implemented on DSP)

\[
x_{k+1} = f(x_k, u_k) \\
y_{k+1} = h(x_{k+1})
\]

Controller operation (every 1/44,100 sec)
- Get analog signal from read head
- Determine the data (1/0) plus estimate the location of the track center
- Update estimate of “wobble”
- Compute where to position disk head for next read (limited by motor torque)

Performance specification
- Keep disk head on track center
- Reject disturbances due to disk shape, shaking and bumps, etc

State: estimated center, wobble
Inputs: read head signal
Outputs: commanded motion
Distributed Computing Example
Managing Shared Resources

Process lifecycle

1. Computing
2. Waiting for access to shared files
3. Using shared files (for finite time)
 - Back to computing

Ensure that waiting is finite,
(i.e., processes are never stuck forever).
Graph Representation of State Transitions

States: Vertices
Transitions: Directed colored edges
Color: Represents statement – each statement has its own color. In this example there are three statements (colors): red, blue and black (skip).
P Implies Always.X

X is a predicate on states.

P Implies Always.X means: all states reachable from states for which P holds satisfy X.
P Implies Eventually Q

- A set of states in which Q holds
- Computation
- States
Pictorial Representation

Set of states in which Q holds

states

computation

What about cycles?
Can the System Remain in this Loop Forever?

- **P**
- **Blue action**
- **Green action**
- **NOT P**
Can the System Remain in this Loop Forever?

Not if the blue action is executed eventually, i.e., not if the system is “weakly fair.”
Can the System Remain in This Loop Forever?

Green action

Blue action

NOT P
Can the System Remain in This Loop Forever?

Yes, even if the green action is picked eventually and the blue action is picked eventually. So picking each color infinitely often isn’t enough to guarantee exit from the loop.
Can the System Remain in This Loop Forever?

Not if the probability that a color is picked (independently) is at least p for some positive constant p, i.e., not if the system is “strongly fair.”
CDS Convergence
CS Termination

• **CDS:**
 – Convergence; proofs use Lyapunov functions and limits.
 – System state gets arbitrarily close to convergence point as time progresses.

• **CS:**
 – Termination: proofs use well-founded sets and variant (like Lyapunov) functions

Well-founded set cartoon

Cannot travel down chain for infinite hops
Overview

1. Control theory approaches
2. Distributed computing theory
3. What are the significant differences? And, why are there differences?
4. Example: Graph algorithms from the CDS & CS viewpoints.
5. Example: Mobile agents in formation from the CDS and CS viewpoints.
6. Caltech joint CDS/CS research: MURI
Differences: CDS, CS

• Distributed computing assumes very little: arbitrary numbers of agents, arbitrary message delays, arbitrary failure periods (but finite).

• Control theory assumes a lot more: continuous interaction, bounded delays
Differences: CDS & CS

• Distributed computing theory proves relatively little about progress: eventually good things happen.

• Control theory proves a lot about dynamics.
Differences: CDS & CS

Distributed computing theories are partitioned into theories about:

1. Correctness: **Boolean**
2. “Ilities”: Reliability, maintainability, performance, ... that have **continuous measures**.
Overview

1. Control theory approaches
2. Distributed computing theory
3. What are the significant differences? And, why are there differences?
4. Example: Graph algorithms from the CDS & CS viewpoints.
5. Example: Mobile agents in formation from the CDS and CS viewpoints.
6. Caltech joint CDS/CS research: MURI
Control Theory: Graph Dynamics

\[\frac{dX}{dt} = \Lambda \cdot X \]

\[\Lambda = \begin{pmatrix} -5 & 3 & 1 & 1 \\ 0 & -4 & 4 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 2 & 5 & -7 \end{pmatrix} \]

\[\frac{dX[j]}{dt} = \sum W[j, k] \cdot (X[k] - X[j]) \]

Weight on edge from j to k
Graph Dynamics: Consensus

Equilibrium: \(\frac{dX}{dt} = \Lambda X = 0\)

Notation: \(\underline{k} = [k, k, \ldots, k]^T\) is a consensus vector: “all agents come to a consensus \(k\)”

\(\Lambda \underline{k} = 0\) because rows of \(\Lambda\) sum to 1
Discrete State, Continuous Time, Markov Processes

Probability of transition from state j to state k in interval [t, t+dt] given system is in state j at t is Λ[j,k].dt

Λ =
\begin{pmatrix}
-5 & 3 & 1 & 1 \\
0 & -4 & 4 & 0 \\
0 & 0 & -1 & 1 \\
0 & 2 & 5 & -7 \\
\end{pmatrix}
Graph and Markov Processes

P is a row vector, X is a column vector

Markov Dynamics: $\frac{dP}{dt} = P \cdot \Lambda$

Graph Dynamics: $\frac{dX}{dt} = \Lambda \cdot X$
Conservation Law

- Restrict attention to ergodic Markov processes
- Let Π be the equilibrium probability (row) vector for the Markov process.

Theorems:
1. Conservation Law: $\Pi . X = \text{constant}$.
2. Unique equilibrium for X is a consensus k

Corollary:
Unique equilibrium: for all j: $X[j] = (\Pi . X^{(0)})$
Graph Dynamics: Computing Averages

Theorem: All agents converge to the average of initial values if Λ is doubly stochastic.

Proof:
Unique equilibrium: for all j: $X[j] = (\Pi . X^{(0)})$

For average we want: for all j: $X[j] = (\sum_k X_k^{(0)})/N$

Hence, $\Pi = [1/N, 1/N, \ldots, 1/N]$ is a solution

This solution is obtained when Λ is doubly stochastic.
Doubly Stochastic

Sum of outgoing weights
= sum of incoming weights
CDS Questions: What if edge weights change?

- Opponent picks a phase (edge weights) and specifies the duration for each phase.
- What constraints on the opponent guarantee convergence to the same results?
A CDS Approach: Tsitsiklis

Phases defined as matrices (or operators)

\[\frac{dX}{dt} = \Lambda^{(k)} \cdot X \]

where \(\Lambda^{(k)} \) is a member of a set \(\mathcal{Z} \) of matrices.

Opponent picks any matrix from the given set for each interval of time.
CDS & CS Joint Research Questions

• What does convergence mean in this context?

- **Eventually**, no matter what the opponent does, the system state converges.

- Example: Initial condition P guarantees convergence to the origin is:

 For all $\varepsilon > 0$:

 P implies *eventually always* $\| x \| < \varepsilon$
CDS & CS Joint Research Questions

• What do the (different) definitions of stability mean in this context?

➢ The origin is stable means:

 for every $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon) > 0$, such that:

 $|| x(t) || < \varepsilon$ for all t if $|| x(0) || < \delta$

 no matter what the opponent does

➢ $|| x || < \delta \quad \text{implies} \quad always \quad || x || < \varepsilon$
CDS & CS Joint Research Questions

How are constraints on the opponent specified?

Example: System is never permanently partitioned into non-communicating subsets.

Eventually, for every subset S, an agent in S communicates with an agent in its complement.
CS & CDS Joint Research Questions

Questions: What role does the graph play?

Three types of roles:

1. Independent subsets:
 Partitioning the system into non-communicating subsets of agents.

2. State change of each subset:
 Graphs specify the dynamics within each subset.

3. Compositional structure of interactions
Challenges:
How to represent dynamics?
Represent dynamics abstractly: A collection C of agents changes their states while states of other agents remain unchanged and the state change satisfies some relation R_C.
Challenge: Representing Dynamics

• f is a local-to-global monotone function means, for any bags a, b, c where |a| = |b|:
 - f(a) < f(b) IMPLIES f(a U c) =< f(b U c)
 - e.g., min, max, sum, average,…

• f is a local-to-global strongly monotone function means, for any bags a, b, c where |a| = |b|:
 - f(a) < f(b) IMPLIES f(a U c) < f(b U c)
 - e.g., sum, average,…
Combining Dynamics with Temporal Logic

How can we prove, for all $\varepsilon > 0$:
eventually always $\| x \| < \varepsilon$?

We show that there exists an α where $0 \leq \alpha < 1$ such that:
for all v:
1. $\| x \| \leq v$ implies eventually $\| x \| \leq v \cdot \alpha$, and
2. $\| x \| \leq v$ implies always $\| x \| \leq v$

\[\begin{align*}
\| x \| &= v \\
\| x \| &= v \cdot \alpha \\
\| x \| &= v \cdot \alpha^2 \\
\| x \| &= v \cdot \alpha^3
\end{align*}\]
Example: Averages with Arbitrary Communication Failure

- Conservation Law: Any operation that conserves averages locally, conserves averages globally.

- For Lyapunov function: $\Sigma x[j]^2$
 1. $\Sigma x[j]^2 \leq V$ \textbf{implies} always $\Sigma x[j]^2 \leq V$

 2. Find α where $0 \leq \alpha < 1$ such that:

 $\Sigma x[j]^2 = V$ \textbf{implies} \textit{eventually} $\Sigma x[j]^2 \leq V . \alpha$
Find a red-blue partition such that any operation between red and blue agents causes a “big” drop in the Lyapunov fn.
What partition results in “big” drop of the Lyapunov function?

Find a partition such that any operation between red and blue agents causes a big drop in the Lyapunov function.

Larger Δ results in larger decrease in Lyapunov fn.
What partition results in “big” drop of the Lyapunov function?

For fixed $\sum x[j]^2$ and $\sum x[j]$, what is the min max of $(x[j] - x[j+1])$?
Current Work

• Formations of mobile agents with messages
• Automatic theorem proving for continuous systems (PVS)
• Libraries of theorems for dynamics
• Design refinement